
HOMEWORK FOR SUMMER BREAK

This is the last HW. There is no need to submit it.

Exercises: 6.3, 6.6, 7.1, 7.2, 7.3, 7.4, 7.7, 7.8, 7.9, 8.3, 8.4, 8.5. pages 223-225,

The above Exercises from the book are very important. You are supposed to finish them before
final exam.

The rest problems are for your summer break except the first 3 problems, which are useful for
Ex.6.3.

1. Problems related to Ex 6.3, page 223

The following several problems are related to Ex.6.3, page 223.

Problem 1. Let G be a group and H < G be a subgroup of G. Let CG(H) = {g ∈ G : gh = hg,∀h ∈ H}.
The group CG(H) is called the centralizer of H in G. Show that CG(H) is indeed a subgroup of G
and CG(H) is a normal subgroup of NG(H). Moreover, show that there is natural injective homo-
morphism φ : NG(H)/CG(H)→ Aut(H).

Note that in general, H is not a subgroup of CG(H). When is H a subgroup of CG(H)?

Problem 2. (1) Determine the center of Sn.
(2) Determine the center of GLn(F ). Here F is a fixed field.
(3) Let P be the subgroup of GLn(F ) which consists of all permutation matrices. Consider

C(P ) = {g ∈ GLn(F ) : gx = xg,∀x ∈ P}, the centralizer of P in GLn(F ). Note that C(P ) <
N(P ), where N(P ) is the normalizer of P in GLn(F ). The group C(P ) is called the cen-
tralizer of P in GLn(F ). Describe C(P ) explicitly.

Problem 3. Let P be the subgroup of GLn(F ) which consists of all permutation matrices. Let N(P )
be the normalizer of P in GLn(F ).

(1) Let σ ∈ Sn be a permutation and let mk be the number of k-cycles in the cycle decompositions
of σ. For example, if σ = (123)(45)(67)(8)(9) ∈ S9, then m1 = m2 = 2, m3 = 1 and mk = 0
for other k. Note that n =

∑n
k=1 kmk. Let Pσ be the corresponding permutation matrix.

Show that the characteristic polynomial of Pσ is χPσ =
∏n
k=1(xk − 1)mk . For example, in

the above example σ = (123)(45)(67)(8)(9) ∈ S9, we have χPσ = (x3 − 1)(x2 − 1)2(x− 1)2.
(2) Let g ∈ GLn(F ), show that there exists an element σ ∈ Sn such that gPσ ∈ C(P ), the

centralizer of P in GLn(F ).
(3) Describe N(P ). Moreover, show that there is an isomorphism N(P )/C(P ) ∼= Sn.

The last part is Exercise 6.3, page 223.
The following is a related problem.

Problem 4. Let F be a field and T be the subgroup of G = GLn(F ) which consists of all diagonal
matrices. Determine CG(T ), NG(T ) and show that there is an isomorphism NG(T )/CG(T ) ∼= Sn.

The next one is an analogue of the above.

Problem 5. Let F be a field and G = Sp4(F ) be the symplectic group. Let T be the subgroup of G
consisting of all diagonal matrices. Compute NG(T )/CG(T ).

2. Some problems related to direct product

Problem 6. Let G be a group and N,H be two subgroups with N normal. Suppose that G = NoH.
Show that there is an isomorphism G/N ∼= H.
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Problem 7. Let G be a group and N be a normal subgroup. Denote the quotient group G/N by H
and denote the quotient map G → H = G/N by π. Suppose that there is a group homomorphism
s : H → G such that π ◦ s = idH . Show that s is injective and G = N o s(H).

Problem 8. Let G1, G2 be two groups and we consider the direct product G1 × G2. Let p1 :
G1 × G2 → G1 be the projection map defined by p1(g1, g2) = g1. Similarly, let p2 : G1 × G2 be the
map p2(g1, g2) = g2. Consider the triple (G1 ×G2, p1, p2). Suppose that we are given another triple
(H, f1, f2), where H is a group, fi : H → Gi is a group homomorphism for i = 1, 2. Show that there
is a unique group homomorphism φ : H → G1×G2 such that fi = pi ◦φ for i = 1, 2. In other words,
we have the following commutative diagram

H

G1 G1 ×G2 G2

φ
f1 f2

p1 p2

In other words, the direct product satisfies the same kind universal property as direct product of
vector spaces, see section 2 of these notes. Since direct sum of finite number of vector spaces is the
same as the direct product of finite number of vector spaces, one might ask if the same is true for
groups. The answer is No.

Problem 9. Let G1, G2 be two groups and we consider the direct product G1 ×G2. Let ι1 : G1 →
G1 × G2 be the map defined by ι1(g1) = (g1, 1). Similarly, let ι2 : G2 → G1 × G2 be the map
ι2(g2) = (1, g2). Consider the triple (G1 × G2, ι1, ι2). Suppose that we are given another triple
(H, f1, f2), where H is a group, fi : Gi → H is a group homomorphism for i = 1, 2. We ask if the
following is true. Is there a unique group homomorphism φ : H → G1 × G2 such that fi = φ ◦ ιi
for i = 1, 2? In other words, is there a group homomorphism φ : H → G such that the following
diagram is commutative?

G1 G1 ×G2 G2

H

ι1

f1
φ

ι2

f2

The answer is No.
Now the natural question arises. Given two groups G1, G2, is there a triple (G, ι1, ι2) with group

homomorphisms ιi : Gi → G such that it is universal in the above sense? Namely, for any other
triple (H, f1, f2), where H is a group, fi : Gi → H is a group homomorphism for i = 1, 2. Then there
a unique group homomorphism φ : H → G1 ×G2 such that fi = φ ◦ ιi for i = 1, 2. In other words,
there is a group homomorphism φ : H → G1 ×G2 such that the following diagram is commutative.

G1 G G2

H

ι1

f1
φ

ι2

f2

The triple (G, ι1, ι2) indeed exists. It is called the free product of G1 and G2 and it is usually
denoted by G1 ∗ G2. The free product is much more complicate than direct product. Try to think
about what the free product C2 ∗ C2 is. Here C2 is the group with 2 elements. At least how many
elements are there? Try to find an answer online.

There is also a notion called free group, which is defined as follows. Let S be any set. The free
group over S is a pair (ι, G(S)), where G(S) is a group and ι : S → G(S) is a map (between two
sets) such that for any other pair (f,H), where H is a group and f : S → H is a map (between
two sets), there is a unique group homomorphism φ : G(S)→ H such that the following diagram is
commutative

S G(S)

H

ι

φ

https://qingzhang-math.github.io/teaching/file/2024/ext.pdf
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Free groups are covered in sections 7.9 and 7.10 of Artin’s book. We don’t have time to cover this.
If you have time, read this part. If S is a singleton, (which means that |S| = 1), then G(S) ∼= Z.
If |S| > 1, then G(S) is not abelian anymore. Moreover, if S = {x1, x2} contains 2 elements, then
one can check that G(S) = Z ∗ Z, which is the free product of two Z, which is just the free group
of a singleton. More precisely, if we write S1 = {x1} , S2 = {S2}, then S = S1

∐
S2 (here

∐
means

disjoint union), then G(S) = G(S1) ∗G(S2). This is true in general (namely without assuming that
S1, S2 are singletons). These facts could be proved using the universal properties defined above. Try
to check these facts without using the constructions of free groups and free products.

3. Problems on double cosets

The next several problems are about double coset decomposition. It could be in HW12. Since
they are complicate, it is more appropriate for you to do them in the summer break.

Problem 10. Let F be a field and let W = F 2, the two dimensional vector space over F . After
choosing the standard basis B = {ε1, ε2}, we can identify GL(W ) with GL2(F ). Let B′ = {e, f} be
another basis of W , where e = ε1 + ε2, f = ε1 − ε2. Consider the subgroup

H = {g ∈ GL(W ) : ge ∈ Span{e}, gf = f} .
Compute the double cosets

H\GL(W )/B,

where B ⊂ GL(W ) is the upper triangular subgroup. If we want to make it coordinate free, then

B = {g ∈ GL(W ) : gε1 ∈ Span {ε1}} .

There is a higher dimensional version of this problem.

Let J2 =

[
1

1

]
. Recall that the symplectic group Sp4(F ) is defined by

Sp4(F ) =

{
g ∈ GL4(F )|gt

[
J2

−J2

]
g =

[
J2

−J2

]}
.

Problem 11. Let B be the upper triangular subgroup of Sp4(F ). Compute the double coset

B\Sp4(F )/B.

Apparently, this problem has a higher dimensional version.

Problem 12. (1) Let G = GLn(R) and K = On(R). Describe the double coset K\G/K.
(2) Let G = GLn(C) and K = Un(C). Describe the double coset K\G/K.

This is related to the Cartan decomposition. See HW 8.

4. Projective space and projective linear group

In some sense, group theory is useful because of group actions. There are many natural group
actions and one very useful fact is the bijection G/Stab(x) ∼= Ox. Recall that one important appli-
cation of these ideas is to prove the 3 Sylow Theorems. In order to use this, one needs to keep in
mind several natural group actions. For example, given a group G and a subgroup H, we have the
following natural group actions. (1) The group G acts on itself by left multiplication. (2) The group
G acts on G by conjugation. (3) The group G acts on the left coset space G/H by left multiplication.
(4) The group G acts on the power set P(G) by left multiplication, where the power set P(G) is the
set of all subsets of G. (5) The group G acts on P(G, k) by left multiplication, where P(G, k) is the
subset of P(G) which is consisting of order k subsets of G. (6) The group GLn(F ) acts on Fn, where
F is a field. (7) The group D2n acts on a regular n-polygon. (8) The tetrahedral group T acts on a
tetrahedron. (9) The octahedral group acts on a cube or an octahedron. (10) The icosahedral group
acts on a dodecahedron or an icosahedron. In the following, we give another very useful group action.
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Let F be a field and n be a positive integer. We introduce an equivalence relation on Fn+1 as
follows. For α, β ∈ Fn+1, we say that α ∼ β if there is an element c ∈ F× such that β = cα.

Problem 13. Show that R =
{

(α, β) ∈ Fn+1 × Fn+1 : α ∼ β
}

defines an equivalence relation on

Fn+1.

Denote Pn(F ) := Fn+1/ ∼, which is the set of equivalence classes of the above equivalence
relation. For example, P1(F ) is just the set of all lines which passes the origin. The set Pn(F ) is
called the n-dimensional projective space. Here we only view it as a set even it has more structures.

An element of Pn(F ) is of the form [α], where α ∈ Fn+1 and [α] denotes the equivalence class of
α. Note that [α] = [β] if and only if β = cα for some c ∈ F×.

There is a group action of GLn+1(F ) on Pn(F ) defined by

g.[α] = [gα], g ∈ GLn+1(F ), α ∈ Fn+1.

Consider the group PGLn+1(F ) = GLn+1(F )/Z, where Z = {aIn+1, a ∈ F×} is the center of
GLn+1(F ). The group PGLn+1(F ) is called the projective general linear group over F . An
element of PGLn+1(F ) is of the form gZ, where g ∈ GLn+1(F ) and gZ = hZ if and only if g−1h ∈ Z,
or g = hz for some z ∈ Z. Similarly, we consider the group PSLn+1(F ) = SLn+1(F )/Z0, where
Z0 =

{
aIn+1 : a ∈ F×, an+1 = 1

}
is the center of SLn+1(F ).

Problem 14. Show that the map PGLn+1(F )× Pn(F )→ Pn(F ) defined by

(gZ, [α]) 7→ [gα]

is well-defined and it defines a group action of PGLn+1(F ) on Pn(F ). Similarly, show that there is
a group action of PSLn+1(F ) on Pn(F ).

We next consider some very special cases.

Problem 15. Let F be a finite field of order q. What is the cardinality of Pn(F )? What is the
cardinality of PGLn(F)? What is the cardinality of PSL2(F)?

Here “cardinality” of a finite set means the number of elements in the finite set. For the second
part and third part, think about how many elements are in the group GLn(F) and SL2(F).

Problem 16. Let F2 be a finite field of 2 elements. Consider the action of PSL2(F2) on P1(F2).
Show that

PSL2(F2) ∼= S3.

Similarly, show that
PSL2(F3) ∼= A4.

Problem 17. Let F4 be a finite field of 4 elements. Consider the action of PSL2(F4) on P1(F4).
Show that

PGL2(F4) ∼= A5.

There is indeed a finite field of 4 elements. See HW 2 of last year. The above two problems are
indeed Exercises 8.2, 8.3, page 287 of Artin’s book. Hint: The following fact will be useful. If H is
a subgroup of Sn of index 2, then H = An. This Exercise 5.7, page 223. Actually, there is one more
isomorphism

PSL2(F5) ∼= A5,

but this cannot be obtained directly from the action of PSL2(F5) on P1(F5). Because |P1(F5)| = 6
and thus this action only gives us an embedding

PSL2(F5)→ S6,

from this it is not so direct to obtain PSL2(F5) ∼= A5. On the other hand, this embedding is related
to the icosahedral group.

Problem 18. Let F be any field and let B be the upper triangular subgroup of GL2(F ). Using the
group action of GL2(F ) on P1(F ), show that there is a bijective map

GL2(F )/B ∼= P1(F ).

Conclude that B\GL2(F )/B is consisting of two elements.
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Hint for the second part. The double coset B\GL2(F )/B can be viewed as the orbit space of the
natural action of B on the space GL2(F )/B, which can be realized on the natural action of B on
P1(F ) using the above bijection.

This double coset B\GL2(F )/B was computed in previous HWs, which we proved using elemen-
tary row operations from linear algebra. Here we give a group theoretic solution to this for the small
group GL2(F ). This problem could be generalized to more general situations but it needs some
terminologies that we lack at this moment.

5. Upper half plane

Let i =
√
−1. We consider the upper half plane H = {x+ yi| x, y ∈ R, y > 0} of the complex

plane.

Problem 19. Consider the map SL2(R)×H → H defined by([
a b
c d

]
, z

)
7→ az + b

cz + d
,

[
a b
c d

]
∈ SL2(R), z ∈ H.

(1) Show that the above map is well-defined and indeed defines a group action of SL2(R) on H.
Moreover, show that the center of SL2(R) acts trivially on H and thus it defines a group
action PSL2(R) on H.

(2) Find the stabilizer of i ∈ H, namely, compute the group Stab(i) = {g ∈ SL2(R)|gi = i} .
(3) Find the orbit Oi of i. Explicate the bijection SL2(R)/(Stab(i)) ∼= Oi.

The above action can also be explained using the action of PSL2(R) on P1(C). Explain it.
This example of group action is important in number theory.
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